
The quantum fluctuations of (1+1)-dimensional real scalar fields around solitons at the finite

temperatures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 3493

(http://iopscience.iop.org/0305-4470/16/15/015)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 06:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 3493-3506. Printed in Great Britain 

The quantum fluctuations of (1 + 1)-dimensional real scalar 
fields around solitons at the finite temperatures 

Su-qing Chen: and Guang-jiong Nif 
Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green 
Street, Urbana, IL 61801, USA 

Received 12 October 1982, in final form 11 March 1983 

Abstract. We investigate the quantum fluctuations of real scalar fields in a (1 + 1)- 
dimensional space around the solitons at the finite temperatures, using a method based 
on the real-time Green function approach. We calculate the temperature dependence of 
the soliton masses in a sine-Gordon system and a d4 system respectively. We have taken 
into account the corrections due to the existence of bound states and the phase shifts for 
continuum states in soliton potentials. 

1. Introduction 

In a previous paper, Su et a1 (1983, hereafter referred to as I), presented a method 
based on the concept of the coherent state and the approach of the real-time Green 
function to investigate the spontaneous breaking of symmetry in the (1 + 1)- 
dimensional d4 field, as well as its restoration at finite temperatures. It was found 
that the soliton solution, being a coherent state, obeys a ‘classical’ field equation with 
a temperature dependent parameter M 2  instead of a fixed one, (see I (5.7)). Further 
quantum fluctuations are excited on this background and handled by the Green 
function method. Therefore, in this paper, we shall take a more straightforward 
approach by assuming that the (1 + 1)-dimensional quantum field 4 is composed of 
two parts. 

d = & + J  (1.1) 
(Dashen el al 1974, Maki and Takayama 1979a, b) where ds is the ‘classical’ soliton 
solution while 4 is the fluctuation around it. The latter is quantised as follows: 

1 J ( &  t )  = ; ( 2 L w k )  1 / 2  ( C k ( t ) + C L ( t ) )  exp(ikx) (1.2) 

where 

wk = ( j ~ ~ + k ~ ) ~ ’ ~  (1.3) 

with p remains arbitrary and will be used as a tool in calculation as discussed in I. 
Furthermore, aiming at carefully studying the quantum fluctuations around the soliton, 
we will introduce the momentum non-conserved Green function and try to make the 
theory more complete. 
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The organisation of this paper is as follows. Firstly in B 2 we study the sine-Gordon 
system and carry out a p normal-ordering renormalisation scheme. Then in § 3 we 
reduce the Hamiltonian in such a way that we are able to present a refined version 
of the real-time Green function approach in 9: 4. Accordingly, in 9: 5 we discuss the 
problem about the existence of a critical temperature T, in the SG system. In B 6 we 
re-examine the d4 system. Section 7 is the summary and discussion. 

2. p normal-ordering and renormalisation 

We begin with the Lagrangian density of sine-Gordon system 

2 = : ( a 4 / a t ) 2 - ~ ( a ~ / a x ) 2 + ( m ~ / g 2 )  COS g4 -mt /g2  (2.1) 

and try to make a transition from classical theory to quantum theory by quantising 
the q5 field in the Heisenberg picture: 

( 2 . 2 ~ )  

(2.2b) 

4(x ,  t )  = 1 (2bk)- ' '2(ak(t)  exp(ikx)+ai( t )  exp(-ikx)) 
k 

x(x,  t )  =aq5/at = 1 i ( u L ' 2 / 2 ~ ) ( a : ( t )  exp(-ikx)-uk(t) exp(ikx)) 

with 
k 

[ak(r), a:, ( t ) ]  = S k k '  (2.3) 

and 
w k  = ( ~ ' + k ~ ) l ' ~  (2.4) 

where the mass p remains arbitrary at the present stage. In order to eliminate the 
ambiguities stemming from the ultraviolet divergences in quantum field calculations, 
a normal ordering procedure is necessary. All the operators a t  will be rearranged on 
the left while all the U ' S  will be on the right, for example, 

N , ( U k U : ) = :  aka: : = U : U k .  (2.5) 
By means of the Baker-Campbell-Hausdorff theorem 

eA+B = eAeB exp(- 1/2[A, B ] )  (2.6) 

where [A, B] commutes with A and B respectively, we have 

exp(igq5) = (p22/4A2)R2'8~~N,[exp(igq5)] (2.7) 
with A being the cut-off momentum. Therefore, we get from (2.1) the Hamiltonian 
density 

~ = N N , [ ( t . r r 2 + ~ ( a q 5 / a x ) 2 - ( m 2 / g 2 )  cos g4  +Do] (2.8) 
where 

m 2  = m2b(p2/4A2)R2'8" = m i  exp[(g2/4x) ln(p/2A)] (2.9) 

Do= mZ/g2+(87r)-'  d k ( 2 ~ k  - p 2 Z / u k ) .  (2.10) I 
The parameters m 2  and g 2  are all finite numbers now. Notice, however, that m 2  

is p dependent. The fact that the normal-ordering prescription with respect to a mass 
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CL is equivalent to a renormalisation in parameters was proved by Coleman (1975) 
and Chang (1976). We will choose ,U as the mass of the elementary excitation (phonon) 
in our system. 

3. The reduced Hamiltonian of the sine-Gordon system 

Starting from the renormalisation Hamiltonian density (2.8), we substitute (1.1) into 
it and quantise the fluctuation 4 as (1.2). Having the experience of 4, as a time- 
independent classical field which can commute freely with the operators c. The mass 
parameter p in (1.3) is also the same as in (2.4). Since 

(3.1) 

by expanding cos g4  and sin g$ in terms of the operators c the Hamiltonian will be 

(3.2) 

N,  COS g4 = N ,  c o s g ( ~ , + ~ ) = ~ , ( c o s g ~ , c o s g ~ - s i n  g4,singG) 

H = H s + H 1 + H ;  + H 2 + H ;  + H 3 + H q + .  . . 
where 

H,= J” [i(a4,/a+(m2/g*) cos g&+DoIdx (3.3) 

(3.6) 

m 2  
H2= ~ k ~ , ( w k 1 w k 2 ) - 1 ’ 2  J” cosg4sexp[i(kl+k?)x]: (CklfCik,)(Ckz+Cikz):. . . . (3.7) 

Evidently, there are n operator products in H, and n goes to infinity. Let us now 
make a pairing approximation as in I, for example, 

c l k l C k 2 C k 3  (c t k l C k 2 ) a k l - k 2 C k 3  + (c yklCk3)Sk1-k3Ck> + (Ck2Ck,)Sk2-k3Clkl (3.8) 
with (tick) and (c:c?k) (=(c-kck)) being the ensemble average value of relevant 
operators. Following this pattern, we are able to reduce the whole Hamiltonian to 

f i = H s + k l + k 2 + H ;  (3.9) 
where 

with 

M~ = m2/(1 +g2v)  

(3.11) 

(3.12) 
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and 
1 ;  i t  v = 2 - (CPC, + c -&,) 

P 2LWP 
being temperature dependent. 

Now let us evaluate the expectation value of the Hamiltonian: 

(3.13) 

U = (A) (3.14) 

and make a further pairing approximation in (I?2), Then use of the variation principle 

SV/S#J,(x) = 0 
will lead to 

d2#J,/dx2 - ( M 2 / g )  sin g#Js = 0 

(3.15) 

(3.16) 

which can also be obtained by the condition 

A, = 0. (3.17) 

The solution of equation (3.16) is known as a kink-like soliton: 

(3.18) -1 Mx 4,(x 1 = (4/g) tan e 

4. A refined formalism for the real-time Green function approach 

As we wish to study the quantum fluctuations carefully in the presence of a soliton 
state, we introduce the momentum non-conserved Green functions as follows: 

GI (P ,  q)E((cpIci))= -i(7’cp(t)ci(r’)) 

G2(p ,q )=( (c lp / cq ) )  = -i(TcTp(r)ci(r’)). 
“ t  (4.1) 

The equation of motion for G, (a = 1 ,2 )  are 

Making a Fourier transformation 
X 

6 ( p ,  4 )  3 4, € 1  = I dt G J p ,  q )  exp(i€(t - 0 1  (4.3) 2 7  -x 

and using (3.9), we are able to recast equation (4.2) into 

EGdp, 4 )  = (1/27r)Spq +(P2/2w,  +wp/2)61(p, q )+(p2/2wp -wp/2)62(p, 9 )  
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Noting that 

cos g& = 1 - 2 sech2 Mx (4.5) 

Denoting further 

n P , q ) = L A ( P > q ) / J w ,  

we get from (4.8) 
(4.9) 

1 
( E 2 - P 2 - M 2 ) E ( p , q ) +  dk ( P - k )  E ( k ,  q )  = -=(E + w p ) 8 ( p  -4). 5 sinh [7 r (p  - k) /2M] JWP 

(4.10) 

After performing a new Fourier transformation 

(4.11) 

we then recast the integral equation (4.10) into a non-homogeneous differential 
equation 

d2F(x) /dx2+(2M2 sech2Mx - M 2 + E 2 ) F ( x )  = ( w ~ ) ” ~ ( E  +U,) exp(iqx)=S(x). (4.12) 

According to the theory of linear differential equations, the solution of (4.12) can 
be expressed in the following form 

F ( x )  = K(x,  x’)S(x‘) dx’. 

The (mathematical) Green function K(x, x ’ )  satisfies 

J 
( 8 - A ( x ) ) K ( x , x ‘ ) = 8 ( x - x 1 )  

with 

I? = -d2/dx2-2M2 sech2Mx 
5,fEE2-& 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

and can be expanded in terms of the complete set of eigenfunctions un(x)  as follows: 

(4.17) 

where 

(gn - A ( x ) ) u n ( x )  = 0 (4.18) 
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and 

u:(x)u,(x) dx =a,,,,. (4.19) I 
Substituting (4.17) into (4.13): (4.11) through (4.9) and (4.7), we finally obtain 

where 

C,, ( p  1 = -- U ,  (x ) exp(-ipx) dx. 
2?r ' I  

(4.20) 

(4.21) 

14.22) 

Therefore, the correlation function which we are seeking can be expressed as 
i c  (tic, +C&,) 

4 ,  E +is) -A@, q, E -is) dE = i  I 
exp(PE) - 1 

5. Does the critical temperature of the sine-Gordon system exist? 

Let us write equation (4.18) for the sine-Gordon system in the explicit form: 

(8" +d2 /dx2+2M2 sech2Mx)u,(x) = 0. (5.1) 
Equation (5.1) can be viewed as a stationary Schrodinger equation of 'particle' with 
'mass' t moving in a 'potential well' -2M2 sech2 Mx. The solutions of equation (5.1) 
had been discussed by Morse and Feshbach 11953). There is only one bound state with 

go = - M 2  (5.2) 

which corresponds to 

Ei=%'O+M2=0 (5.3) 
and the eigenfunction 

U&) = (M/2)'"sech Mx (5.4) 
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is just the well known zero mode of the soliton. It is intimately related to the 
wavefunction of the soliton in configuration space through 

uo(x 1 - d&(x )/dx ( 5 . 5 )  

as is easily seen by 13.18) and (5.4). Usually, the relation (5.5) is regarded as the 
starting point in discussing the zero mode; one also finds this mode u o ( x )  by solving 
the eigenequation 

w2,uJx) = -d2/dx2u,(x)+ V”(~,)U,(X) ( 5 . 6 )  

with zero eigenvalue of energy (Dashen et a1 1974, Jackiw 1977, Gervais 1976, 
Rajaraman 1975, Coleman 1977, Maki and Takayama 1979). It is interesting here 
that equation (5.6) just coincides with (5.1) which emerges from the Green function 
approach with the mass parameter m in potential V ( d J  replaced by M. Since the 
zero mode represents the translational degree of freedom of the soliton and has no 
dynamical effect, we will discard it in the latter calculation. 

There are many unbound solutions of equation (5.1) with continuum spectrum 
describing the phonon states (see I) 

8; = k2,  i.e., E: = M 2 + k i ,  (5.7) 

where k is a continuous momentum variable. Each of these solutions describes a 
wave coming from the left and suffereing a phase shift v k  but without any reflection. 

(5.8) q k  = 2 tan-‘ M/k. 

The wavefunction can be expressed exactly as 

u k  (X ) = Nk exp(ikx )( k + &f tanh Mx ) (5.9) 
(Naki and Takayama 1979, Rubinstein 1970). The normalisation condition (4.19) 
leads to 

N :  =[ (k2+M2)L-2M]- ’ .  (5.10) 

Substituting the Fourier transform of uk(x) 

1 
Lk(p)=  - Uk(X)exp(-ipx)dx= 

21r ‘ I  2 sinh[(k -p) l r /2M] 

into (4.20), we should pay attention to the boundary condition 

k,L + v k ,  = 2lrn (5.12) 
and replace the summation by integration as follows 

Substituting (5.11) into (4.23) and putting q = p ,  we have 
- I  

(C6CP + C 1 , C P )  

(5.13) 

L 1 
sin h2[( k - p )lr/2M] (5.14) 
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where the cross terms of & ( p ) & ( p )  vanish because 

1 1 ) = 0  
-') sinh[(k -p)7r/2M] 

limk S ( k - p )  
4 - P  ( sinh[(k -q)7r/2M] 

due to the fact that sinh x is an odd function in x .  
From now on, the previously arbitrary mass p in (1.3) has been set equal to M, 

the mass of the phonon defined in (3.12). The advantage of this prescription is to 
make the quntum fluctuations around the soliton, being the elementary phonon 
excitation, become as independent from each other as possible. Actually, they are 
the completely free phonons described by plane waves under the approximation made 
in I. 

We find the parameter v defined in (3.13) as 

(5.15) 

= T/2M + (1/27r) l n ( M / 4 ~ T )  + y/27r - [((3)/2(2ir)3](M/T)2 
(5.16) 

+ o ( M ~ / T ~ )  
( y  = 0.5772, ((3) = 1.2021) 

and 

fi(PM)= -lo dk/w:[exP(@wk)-l] 
M 2  
lr 

= T/4M- 1 / 2 ~ + 7 r M / 1 2 T  -[L(~)/(~T)*](M/T)~+O(M~/T~) (5.17) 

are the same as defined by Maki and Takayama (1979). Therefore, in the high- 
temperature approximation 

v = 3 T/ 16M + (47r)-'[ln(M/ T 1 + (i + y 1 - In 47r - 7r 2M/ 12 T 3. (5.18) 

The combination of equations (5.18) and (3.12) does not give us any singular 
behaviour in M under the weak coupling region g2<< 1. There only exists a non- 
physical pole g2v = - 1 which is irrelevant to the existence of a critical temperature 
T,. Formally, the condition 

g2v(Tc) = 1 (5.19) 
would make the series in f?2 divergent and give us a value of T,. Keeping only the 
first term in (5.18), we would have 

TL*) = (8J5/3g2)6io 
where 

6; = & - E 2  

mo is the m at T = 0 and 

(5.20) 

(5.21) 

g" = g 2 / ( 8 x  - g 2 ) .  (5.22) 
In the plane wave approximation, we have instead 

TZWA = ( 2 ~ 5 / g ~ ) r % ~ .  (5.23) 
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The value of (5.20) or (5.23) is near the same of that found by Maki and Takayama 
(1979) but it seems to us that it is a false phenomenon. 

Because the series of sin g$ and cos g$ in (3.1) have an infinite radius of conver- 
gence and the geometrical series obtained after taking pairing contractions systemati- 
cally as in (3.8) can be summed analytically as follows 

l - g 2 v + g 4 v 2 - g 6 v 3 + .  , , = l / ( l + g 2 v ) .  

We should trust the function on the right-hand side rather than the individual terms 
on the left-hand side in spite of the latter having a unit radius of convergence. We 
think that this attitude is in conformity with many experiences in theoretical physics. 
So we put the condition (5.19) aside and look again at the expression (3.12) carefully. 
Actually in our approximation 

(5.24) 

M will decrease monotonically from mo as T increases:. Therefore, we claim the 
non-existence of a critical temperature in the sine-Gordon system. Recently, Zotos 
and Fowler (1982) obtained the same conclusion by the Bethe-Ansatz approach. 

As a final step, we take the ensemble average of the reduced Hamiltonian 

(M/mO)2-R2'4rr  = [ l  +g2v(T/mo, M l m d - '  

U = (I?) = a,+ U' (5.25) 

where 

a,= 8M/g2-M(2n +7)(fo(PM)-fi(PM)) (5.26) 

U' = L[-M2/g +M2(3f"(PM) -$ffl(PM) +f3(PM)I (5.27) 

with 

(5.28) 

Since U' is a function of T as well as L,  the 'volume' of our system, so a, should 
be regarded as the thermodynamic potential of the soliton even though it does not 
depend explicitly on L.  Therefore, we define the 'internal energy' of the soliton, i.e., 
the mass of the soliton as 

E,zfl,-T dn,/dT. (5.29) 

Noticing further that M is a function of T and using the leading terms in the 

E ,=8M/g2-  (8/g2)T dMfdT =8M/g2.  (5.30) 

In the last step, we have used the fact that the second term is much smaller than the 
first one when T is large and g2  << 1. 

expansions of f O  and f l ,  we have 

6 .  q54 system 

As this system had been discussed in detail by Takayama and Maki (1979) as well as 
in I, we will present our result concisely by using the method in the above sections. 

Here we assume g2 < 8.n. which is a critical value of g2 found by Coleman (1975) 
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Starting from the Lagrangian density 

(6.1) 

and using (1.1) and (1.2) we can derive the reduced Hamiltonian as 

f i = H H o + f i 1 + f i 2  f i 1  +e3 f i 2  = H2 +f i4  (6.21, (6.3), (6.4) 

1 2 4  2 =~(ac$/at)2--(ac$/ax)2+am~c$2-~g c$ 

H1 = / dx(-a2d,/ax2--m2c$,+g2c$,3)$ (6.6) 

where 

m 2  = m? -(3g2/77) I n ( 2 h / k )  (6.10) 

as discussed in I. v is the same parameter as that defined in (3.19). The condition 

f i l = O  (6.1 1 )  

will lead to the equation for 4,: 
d2c$,/dx2+~M2c$,(x) -g2c$:(x) = 0 (6.12) 

with 

~ ~ = m ’ - 1 2 g ~ v .  (6.13) 

Equation (6.12) can also be derived from a variational principle 

s(R)/sd,(x) = 0. (6.14) 

The solution of equation (6.12) is familiar to us: 

&(x) = (M/&g) tanh ~ M x .  (6.15) 

For calculating the elementary spectra we follow the same procedure as for the 
sine-Gordon System. Equations (4 .20H4.24)  remain effective except that the func- 
tion U,, (x) obeys the equation: 

(6.16) (E:  -M2+d2 /dx2+&f2  sech2 ~Mx)u,,(x) = 0 
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which differs from (5.1). Equation (6.16) now has the following solutions 

E: =0 ,  uo(x) = (3M/8)”2 sech2 $Mx (6.17) 

E: = 3&p, u l ( x )  = f(3M)”’sech ~ M x  tanh ~ M x  (6.18) 

E’, = M 2 + k 2 ,  

U k ( X )  = Nklexp(tMx 1 + exp(-:Mx ) ] I Z k  UF{-i2k/M - 2, -i2k/M + 3 

x 11 - i2k/M/ exp(-tMx )/[exp(tMx 1 + exp(-tMx)]} (6.19) 

where F ( a ,  P l y l z )  is hypergeometric function. The solution (6.17) just corresponds 
to the zero mode of (6.15) and 

U O ( X  ) -d /4s(x)  dx (6.20) 

as expected. u l ( x )  is a bound state. The continuum state &(x)  has the following 
asymptotic behaviour. 

16.21) 

with the phase shift 

vk = 2[tan-’ (&W/k)+tan-’(M/k)]. (6.22) 

In order to make the calculation tractable, we prefer to use the following approximate 
representation for u k  (x ) (distorted wave approximations): 

uk(x) = Ck exp(ikx )(k +iM tanh :Mx)\2k + iM tanh $Mx) (6.23) 

C’, =[(4k2+M’)(k2+M2)L - $ M ( 4 M 2 +  15k2)]-’ (6.24) 

(6.25) z;k(p) = ( 1 / 2 n ) C k { ( 2 . r r ( 2 k 2 - M ’ ) S ( k  - p ) - 2 n ( 2 p  +k)/s inh[n(k -p)/M]}. 

Neglecting the details of calculation, we finally get 

Y = ;foiPM) = T/4M + (1/4n)( ln  Mj4.rrT + y )  + O ( M 2 / T 2 )  (6.26) 

the same as in I. This implies that the critical temperature does not change in replacing 
the plane waves by distorted waves in order to describe the phonon states: 

T,  = (2m:/9J3g2){1 + (9g2/2nmi)[ln(m:/g2) - 0.09961). (6.27) 

On the other hand, the energy of the d4 system receives a correction due to the phase 
shifts in continuum states as well as the existence of a bound state. We have 

U = ( H ) =  U‘+R, (6.28) 

where 

(6.29) 

with 
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(Takayama and Maki 1979) 

+ . . . .  5 1  - M4 * dk 
f 4 ( P M ) =  lo w;(4k2+M2)[exp(/3wk)- 11 36 PM 

(6.32) 

The mass of the soliton is defined as before, 

E,=Cl,-T dCl,/dT 

= M3/3g2 -4M + & J ~ M  coth(iJ3PM) 

- T(dM/dT)[M2/g2-f+&& ( c o t h a h P M ) ]  

+ $$I4 (dM/ d T - M /  T) [ exp (J!$M/ 2 )] / [ exp (&M/ 2 1 - 1 1’. (6.3 3 1 

Thus we see 
- E , I ~ - . ~ ) =  m~/3g2+$noc&J3-1 )  (6.34) 

with the correction term not coinciding with that of DHN (Dashen et a1 1974) and TK 

(Takayama and Maki 1979). 
On the other hand, as T + T,, because 

dM/dTlT,r,= - J ~ g 2 / m o ( M - M c ) < 0  (6.35) 

we would have 

(6.36) 

which will reveal an abrupt rise in the vicinity of T + T,. M + M,. We do no know 
if it is a genuine phenomenon of phase transition or simply an outcome of our 
approximation. 

7. Summary and discussion 

We present a method based on the real-time Green function approach to investigate 
the quantum fluctuations of real scalar fields in a (1 + 1)-dimensional space around 
the solitons at finite temperatures. As an improved approximation to that in I, the 
momentum non-conserved Green functions are introduced before we are able to treat 
the various phonon states in the soliton potentials. 

In using the method of the real-time Green function, one has to introduce the 
pairing approximation for reducing the problem to a mathematically tractable one 
and this approximation corresponds to the well known Hartree-Fock approximation 
(Chang 1976). We are fortunate that the pairing approximation here can reduce the 
original Hamiltonian of S-G system to a quite concise one. Moreover, the decomposi- 
tion of 4 into (4 ,+$)  implies, in the language of superfluidity theory, a two-fluid 
model. The coherent state 4, corresponds to the superfluid component and the 
incoherent part, the quantised 4, to the normal fluid one. It is easy to see that the 
average square fluctuation is (4 *) - ( c $ ) ~  = 2v under the pairing approximation. Where 
the property (4) 0 had been used. As we see in the previous sections, Y increases 
with temperature monotonically. So this picture seems reasonable. 

Besides the pairing approximation, we confine our discussion within the one soliton 
sector and neglect all the multi-soliton sectors. It implies that we have assumed tacitly 
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that the average thermal excitation energy is much smaller than the mass of the soliton, 
e.g., for S-G system 

Therefore, when the temperature is not too low, our approximation is legitimate only 
if g 2 < <  1, i.e., only in the weak coupling limit. 

To our knowledge, our treatment is different from that of Maki and Takayama 
(1979) who used the imaginary Green function approach. Though both are valid 
only in the weak coupling region, and both are similar at low temepratures, we still 
expect some different qualtiative behaviour at high temperatures. 

For the sine-Gordon system, we find that the masses of the phonons as well as 
the soliton decrease as the temperatures increases. There is no critical temperature. 

On the other hand, for the 4 4  system, the phase shifts for continuum states as 
well as the existence of a bound state do not affect the value of T, which remains the 
same as calculated by a plane wave approximation. However, we find that the mass 
of the soliton reveals an abrupt rise just before the critical temperature, T -+ T,. This 
phenomenon is probably related to the existence of a phase transition in a d4 system 
(Chang 1976, Stone 1976, 1977). 

As pointed out by Chang (1976), the method of Hartree-Fock approximation 
cannot correctly describe the nature of a phase transition. We have the same difficulty. 
For q54 system, we cannot find the tendency of ML+O when T -+ T,. i.e., we miss 
the cross-over behaviour characterising the second-order transition. (Maki and Takay- 
ama 1979, Takayama and Maki 1979). Nonetheless, further investigation is needed. 
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